Chapter 6 Problem $53{ }^{\dagger}$

Given

$F=a \sqrt{x}=a x^{1 / 2}$
$a=9.5 \mathrm{~N} / \mathrm{m}^{1 / 2}$

Solution

a) Find the work done by this force from $x=0 m$ to $x=3.0 \mathrm{~m}$.

Since the force is changing with position, we use the following definition of work.

$$
W=\int F d x
$$

Integrate the force between x_{1} and x_{2} gives

$$
\begin{equation*}
W_{x_{2}-x_{1}}=\int_{x_{1}}^{x_{2}} a x^{1 / 2} d x=\left.\frac{2}{3} a x^{3 / 2}\right|_{x_{1}} ^{x_{2}}=\frac{2}{3} a\left(x_{2}^{3 / 2}-x_{1}^{3 / 2}\right) \tag{1}
\end{equation*}
$$

Now substitute in $x_{1}=0 m$ and $x_{2}=3.0 \mathrm{~m}$ and $a=9.5 \mathrm{~N} / \mathrm{m}^{1 / 2}$

$$
\begin{aligned}
W & =\frac{2}{3}\left(9.5 \mathrm{~N} / \mathrm{m}^{1 / 2}\right)\left((3.0 \mathrm{~m})^{3 / 2}-(0 \mathrm{~m})^{3 / 2}\right) \\
W & =32.9 \mathrm{~J}
\end{aligned}
$$

b) Find the work done by this force from 3.0 m to 6.0 m .

Equation (1) can be used with the limits of $x_{1}=3.0 \mathrm{~m}$ and $x_{2}=6.0 \mathrm{~m}$.

$$
\begin{aligned}
& W=\frac{2}{3}\left(9.5 \mathrm{~N} / \mathrm{m}^{1 / 2}\right)\left((6.0 \mathrm{~m})^{3 / 2}-(3.0 \mathrm{~m})^{3 / 2}\right) \\
& W=60.2 \mathrm{~J}
\end{aligned}
$$

c) Find the work done by this force from 6.0 m to 9.0 m .

Equation (1) can be used with the limits of $x_{1}=6.0 \mathrm{~m}$ and $x_{2}=9.0 \mathrm{~m}$.

$$
\begin{aligned}
& W=\frac{2}{3}\left(9.5 \mathrm{~N} / \mathrm{m}^{1 / 2}\right)\left((9.0 m)^{3 / 2}-(6.0 \mathrm{~m})^{3 / 2}\right) \\
& W=77.9 \mathrm{~J}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

