Chapter 5 Problem $39{ }^{\dagger}$

Given

$m=45 \mathrm{~kg}$
$r=5.0 \mathrm{~m}$
$v=6.3 \mathrm{~m} / \mathrm{s}$

Solution

a) Find the horizontal and vertical components of force exerted on the skate blades.

The free-body diagram is given above. Chose the x-coordinate to be to the right. Using Newton's $2^{\text {nd }}$ law

$$
\begin{aligned}
& \Sigma \vec{F}=m \vec{a} \\
& \vec{F}_{i}+\vec{W}=m \vec{a}
\end{aligned}
$$

Since the skater is going around a circle at constant speed the acceleration must be centripetal acceleration. The direction of this acceleration is in the -x direction. Write out the equation in unit vector notation.

$$
-F_{i} \sin \theta \hat{i}+F_{i} \cos \theta \hat{j}-m g \hat{j}=-m \frac{v^{2}}{r} \hat{i}
$$

The x-component of this equation is

$$
\begin{equation*}
-F_{i} \sin \theta=-m \frac{v^{2}}{r} \tag{1}
\end{equation*}
$$

and the y -component of this equation is

$$
\begin{equation*}
F_{i} \cos \theta-m g=0 \tag{2}
\end{equation*}
$$

In equation (1) the horizontal component of the force on the skate blades is $F_{i} \sin \theta$. Solving for this quantity gives

$$
F_{h}=F_{i} \sin \theta=m \frac{v^{2}}{r}=(45 \mathrm{~kg}) \frac{(6.3 \mathrm{~m} / \mathrm{s})^{2}}{(5.0 \mathrm{~m})}=357 \mathrm{~N}
$$

The vertical component of the force on the skate blades is equal to the normal force which is the quantity $F_{i} \cos \theta$. From equation (2) this is

$$
F_{v}=F_{i} \cos \theta=m g=(45 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=441 \mathrm{~N}
$$

[^0]b) Find the angle the skater is leaning without falling over.

The angle θ is the tangent of the opposite side (horizontal component) divided by the adjacent side (vertical component). This gives

$$
\begin{aligned}
& \tan \theta=\frac{F_{h}}{F_{v}} \\
& \theta=\tan ^{-1}\left(\frac{F_{h}}{F_{v}}\right)=\tan ^{-1}\left(\frac{357 N}{441 N}\right)=39.0^{\circ}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

