

Given
$m=2.0 \times 10^{6} \mathrm{~kg}$
$a=0.60 g$ upward

Solution

a) Find the thrust of the shuttle.

The two forces acting on the shuttle are the thrust and the weight. From Newton's 2nd law

$$
\Sigma \vec{F}=\vec{F}_{\text {thrust }}+\vec{W}=m \vec{a}
$$

Solving for thrust gives

$$
\vec{F}_{\text {thrust }}=m \vec{a}-\vec{W}
$$

The weight vector is

$$
\vec{W}=-m g \hat{j}
$$

and the acceleration upward at $0.60 g$ is represented as the vector

$$
\vec{a}=0.60 g \hat{j}
$$

This makes the force of thrust

$$
\begin{aligned}
\vec{F}_{\text {thrust }} & =m \vec{a}-\vec{W}=m(0.60) g \hat{j}-(-m g \hat{j}) \\
\vec{F}_{\text {thrust }} & =m g(0.60+1) \hat{j}=1.60 m g \hat{j}
\end{aligned}
$$

Substituting the value for gravitational acceleration gives

$$
\begin{equation*}
\vec{F}_{\text {thrust }}=1.60\left(2.0 \times 10^{6} \mathrm{~kg}\right)\left(9.8 \hat{j} \mathrm{~m} / \mathrm{s}^{2}\right)=3.14 \times 10^{7} \hat{j} \mathrm{~N} \tag{1}
\end{equation*}
$$

b) Find the force on an astronaut with a mass of 60 kg .

The astronaut is accelerating at the same rate as the shuttle, so formula (1) is still applicable except with a mass of 60 kg .

$$
\vec{F}_{\text {thrust }}=1.60(60 \mathrm{~kg})\left(9.8 \hat{j} \mathrm{~m} / \mathrm{s}^{2}\right)=941 \hat{j} N
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

