Chapter 3 Problem $83{ }^{\dagger}$

Given

$\vec{v}_{0}=21 \hat{j} \mathrm{~km} / \mathrm{s}$
$\vec{a}=0.035 \hat{i} \mathrm{~km} / \mathrm{s}^{2}$
$t=4 \mathrm{~min}=240 \mathrm{~s}$

Solution

Will firing the rocket 4 min result in a new velocity that is 22.6° from the original direction and displace it $5.36 \times 10^{3} \mathrm{~km}$?

First find the resultant velocity vector.

$$
\begin{aligned}
& \vec{v}=\vec{v}_{0}+\vec{a} t=\{21 \hat{j}+0.035 \hat{i}(240 \mathrm{~s})\} \mathrm{km} / \mathrm{s} \\
& \vec{v}=\{8.4 \hat{i}+21 \hat{j}\} \mathrm{km} / \mathrm{s}
\end{aligned}
$$

The direction of this vector is

$$
\theta=\tan ^{-1}\left(\frac{8.4}{21}\right)=21.8^{\circ}
$$

The displacement is

$$
\begin{aligned}
& \Delta \vec{r}=\vec{r}-\vec{r}_{0}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \Delta \vec{r}=\{21 \hat{j}\} \mathrm{km} / \mathrm{s}(240 \mathrm{~s})+\frac{1}{2}\{0.035 \hat{i}\} \mathrm{km} / \mathrm{s}^{2}(240 \mathrm{~s})^{2} \\
& \Delta \vec{r}=\{1008 \hat{i}+5040 \hat{j}\} \mathrm{km}
\end{aligned}
$$

The position of the asteroid will be shifted to one side of its original trajectory by a distance of 1008 km . If the rocket were fired a little bit longer, it would achieve the right angle. However, it still does not divert it enough to avoid a collision.

[^0]
[^0]: †Problem from Essential University Physics, Wolfson

