Chapter 3 Problem $37{ }^{\dagger}$

Given

$\vec{r}=\left\{\left(3.2 t+1.8 t^{2}\right) \hat{i}+\left(1.7 t-2.4 t^{2}\right) \hat{j}\right\} m$

Solution

Find the magnitude and direction of the acceleration.
The acceleration is the second derivative of the position vector with respect to time.

$$
\begin{aligned}
& \vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}=\frac{d^{2}\left\{\left(3.2 t+1.8 t^{2}\right) \hat{i}+\left(1.7 t-2.4 t^{2}\right) \hat{j}\right\} m}{d t^{2}} \\
& \vec{a}=\{2(1.8) \hat{i}+2(-2.4) \hat{j}\} \mathrm{m} / \mathrm{s}^{2}=\{3.6 \hat{i}-4.8 \hat{j}\} \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

The magnitude of the acceleration is then

$$
\begin{aligned}
& a=\sqrt{\left(a_{x}\right)^{2}+\left(a_{y}\right)^{2}}=\sqrt{(3.6)^{2}+(-4.8)^{2}} \mathrm{~m} / \mathrm{s}^{2} \\
& a=6.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The direction is in the fourth quadrant.

$$
\theta=\tan ^{-1}\left(\frac{-4.8}{3.6}\right)=-53^{\circ}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

