Chapter 2 Problem 26^{\dagger}

Given

$t=8.5 \mathrm{~min}$
$v=7.6 \mathrm{~km} / \mathrm{s}$

Solution

What is the average acceleration compared to gravity?
First convert the velocity into m / s.

$$
v=7.6 \mathrm{~km} / \mathrm{s}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=7600 \mathrm{~m} / \mathrm{s}
$$

Also convert the time into seconds.

$$
t=8.5 \min \left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=510 \mathrm{~s}
$$

From the definition of acceleration

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{7600 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{510 \mathrm{~s}-0 \mathrm{~s}}=14.9 \mathrm{~m} / \mathrm{s}^{2}
$$

Compared to gravity

$$
14.9 \mathrm{~m} / \mathrm{s}^{2}\left(\frac{1 \mathrm{~g}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)=1.52 \mathrm{~g}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

