Chapter 1 Problem $47{ }^{\dagger}$

Solution

Compare the uncertainty when rounding numbers of various magnitudes.
a) Find the percent uncertainty for 1.1

This number implies a measurement falling in the range $1.05 \leq x<1.15$. The uncertainty is ± 0.05. Comparing this uncertainty with the measured value, we have a percent uncertainty of

$$
\begin{aligned}
& \% \text { Uncertainty }=\frac{\text { Uncertainty }}{\text { Value }} \times 100 \% \\
& \% \text { Uncertainty }=\frac{ \pm 0.05}{1.1} \times 100 \%= \pm 4.5 \% \approx \pm 5 \%
\end{aligned}
$$

b) Find the percent uncertainty for 5.0

This number implies a measurement falling in the range $4.95 \leq x<5.05$. The uncertainty is ± 0.05. Comparing this uncertainty with the measured value, we have a percent uncertainty of

$$
\begin{aligned}
& \% \text { Uncertainty }=\frac{\text { Uncertainty }}{\text { Value }} \times 100 \% \\
& \% \text { Uncertainty }=\frac{ \pm 0.05}{5.0} \times 100 \%= \pm 1.0 \%
\end{aligned}
$$

c) Find the percent uncertainty for 9.9

This number implies a measurement falling in the range $9.85 \leq x<9.95$. The uncertainty is ± 0.05. Comparing this uncertainty with the measured value, we have a percent uncertainty of

$$
\begin{aligned}
& \% \text { Uncertainty }=\frac{\text { Uncertainty }}{\text { Value }} \times 100 \% \\
& \% \text { Uncertainty }=\frac{ \pm 0.05}{9.9} \times 100 \%= \pm 0.45 \% \approx \pm 0.5 \%
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

