Chapter 14 Problem $61{ }^{\dagger}$

Given

$a=5.2 \mathrm{~km}$
$\theta=35^{\circ}$
$v_{s}=330 \mathrm{~m} / \mathrm{s}$

Solution

Find the speed of the plane.
From trigonometry the distance to the apparent sound source is related to the distance travelled by the plane, d, by the relationship

$$
\begin{equation*}
\sin \theta=\frac{d}{h} \tag{1}
\end{equation*}
$$

The distance the sound travels is the velocity of sound times the time it takes to get to the listener.

$$
\begin{equation*}
h=v_{s} t \tag{2}
\end{equation*}
$$

During this same time the plane travels from the apparent sound source to directly overhead. This distance is the speed of the plane times the time.

$$
\begin{equation*}
d=v_{p} t \tag{3}
\end{equation*}
$$

Substituting equations 2 and 3 into 1 gives

$$
\sin \theta=\frac{v_{p} t}{v_{s} t}=\frac{v_{p}}{v_{s}}
$$

Solving for the speed of the plane gives

$$
\begin{aligned}
& v_{p}=v_{s} \sin \theta=(330 \mathrm{~m} / \mathrm{s}) \sin 35^{\circ} \\
& v_{p}=189 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

