Chapter 11 Problem $19{ }^{\dagger}$

Given

$\vec{F}=\{1.3 \hat{i}+2.7 \hat{j}\} N$
$\vec{r}=\{3.0 \hat{i}+0 \hat{j}\} m$

Solution

Find the torque about the origin.
Torque is given by the cross product between the force arm and the force vector.

$$
\begin{aligned}
& \vec{\tau}=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& \vec{\tau}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3.0 & 0 & 0 \\
1.3 & 2.7 & 0
\end{array}\right| N \cdot m
\end{aligned}
$$

Expanding the matrix by minors gives

$$
\vec{\tau}=\left(\hat{i}\left|\begin{array}{cc}
0 & 0 \\
2.7 & 0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
3.0 & 0 \\
1.3 & 0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
3.0 & 0 \\
1.3 & 2.7
\end{array}\right|\right) N \cdot m
$$

Solving the determinant of the 2×2 matrices gives

$$
\begin{aligned}
\vec{\tau} & =\{\hat{i}((0)(0)-(2.7)(0))-\hat{j}((3)(0)-(1.3)(0))+\hat{k}((3.0)(2.7)-(1.3)(0))\} N \cdot m \\
\vec{\tau} & =\{\hat{i}(0)-\hat{j}(0)+\hat{k}(8.1)\} N \cdot m \\
\vec{\tau} & =8.1 \hat{k} N \cdot m
\end{aligned}
$$

b) Find the torque about the point $\vec{r}_{0}=\{-1.3 \hat{i}+2.4 \hat{j}\} m$.

The force arm is the difference between the point of interest and the location at which the force is applied. Therefore,

$$
\begin{aligned}
\vec{\tau} & =\left(\vec{r}-\vec{r}_{0}\right) \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
r_{x}-r_{0 x} & r_{y}-r_{0 y} & r_{z}-r_{0 z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
\vec{\tau} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3.0-(-1.3) & 0-2.4 & 0 \\
1.3 & 2.7 & 0
\end{array}\right| N \cdot m \\
\vec{\tau} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
4.3 & -2.4 & 0 \\
1.3 & 2.7 & 0
\end{array}\right| N \cdot m
\end{aligned}
$$

Expanding the matrix by minors gives

$$
\vec{\tau}=\left(\hat{i}\left|\begin{array}{cc}
-2.4 & 0 \\
2.7 & 0
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
4.3 & 0 \\
1.3 & 0
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
4.3 & -2.4 \\
1.3 & 2.7
\end{array}\right|\right) N \cdot m
$$

[^0]Solving the determinant of the 2×2 matrices gives

$$
\begin{aligned}
& \vec{\tau}=\{\hat{i}((-2.4)(0)-(2.7)(0))-\hat{j}((4.3)(0)-(1.3)(0))+\hat{k}((4.3)(2.7)-(1.3)(-2.4))\} N \cdot m \\
& \vec{\tau}=\{\hat{i}(0)-\hat{j}(0)+\hat{k}(14.7)\} N \cdot m \\
& \vec{\tau}=14.7 \hat{k} N \cdot m
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

