Chapter 10 Problem $53{ }^{\dagger}$

Given

$m=10 \mathrm{~kg}$
$l=1.25 \mathrm{~m}$

Solution

a) Find the moment of inertia of the propeller.

Treating each blade as a rod, the total moment of inertia is three times the moment of inertia for a rod rotated about one end.

$$
\begin{aligned}
& I_{t o t}=3 I_{\text {rod }}=3\left(\frac{1}{3} M R^{2}\right)=M R^{2}=(10 \mathrm{~kg})(1.25 \mathrm{~m})^{2} \\
& I_{t o t}=15.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

b) Find the time to increase the angular speed from 1400 rmp to 1900 rmp due to a torque of $2700 \mathrm{~N} \cdot \mathrm{~m}$.

First convert the angular speeds into $\mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
& \omega_{0}=\left(\frac{1400 \mathrm{rev}}{\mathrm{~min}}\right)\left(\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=147 \mathrm{rad} / \mathrm{s} \\
& \omega_{f}=\left(\frac{1900 \mathrm{rev}}{\mathrm{~min}}\right)\left(\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=199 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Angular acceleration is related to torque by the formula

$$
\tau=I \alpha
$$

Solving for angular acceleration gives

$$
\begin{equation*}
\alpha=\frac{\tau}{I} \tag{1}
\end{equation*}
$$

Use the definition of average angular acceleration to get the time.

$$
\begin{align*}
& \alpha=\frac{\Delta \omega}{\Delta t} \\
& \Delta t=\frac{\Delta \omega}{\alpha} \tag{2}
\end{align*}
$$

[^0]Combining equation 1 and 2 gives a time of

$$
\Delta t=\frac{\Delta \omega}{\tau / I}=\frac{I\left(\omega_{f}-\omega_{0}\right)}{\tau}
$$

Substituting in the values gives

$$
\Delta t=\frac{\left(15.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(199 \mathrm{rad} / \mathrm{s}-147 \mathrm{rad} / \mathrm{s})}{2700 \mathrm{~N} \cdot \mathrm{~m}}=0.30 \mathrm{~s}
$$

[^0]: ${ }^{\dagger}$ Problem from Essential University Physics, Wolfson

