Chapter 2 Problem 27 †

Given
\[t = 1.12 \text{ s} \]
\[v = 11.0 \text{ m/s} \]
Comes to a stop in 0.131 s

Solution
Find the acceleration while falling and deceleration while stopping.

While falling the acceleration is
\[\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{11.0 \text{ m/s} - 0 \text{ m/s}}{1.12 \text{ s} - 0 \text{ s}} = 9.82 \text{ m/s}^2 \]

While stopping the acceleration is
\[\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} = \frac{0 \text{ m/s} - 11.0 \text{ m/s}}{0.131 \text{ s} - 0 \text{ s}} = -84.0 \text{ m/s}^2 \]

The negative sign indicates that the egg is slowing down or decelerating.

†Problem from Essential University Physics, Wolfson